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Molecular dispersion is caused by both molecular diffusion and non-uniform bulk fluid
motion. While the Taylor–Aris dispersion regime is the most familiar regime in
microfluidic systems, an oft-overlooked regime is that of purely kinematic (or ballistic)
dispersion. In most microfluidic systems, this dispersion regime is transient and quickly
gives way to Taylor–Aris dispersion. In electrophoretic focusing methods such as
temperature gradient focusing (TGF), however, the characteristic time scales for
dispersion are fixed, and focused peaks may never reach the Taylor limit. In this
situation, generalized Taylor dispersion analysis is not applicable. A heuristic model is
developed here which accounts for both molecular diffusion and advective dispersion
across all dispersion regimes, from pure diffusion to Taylor dispersion to pure advection.
This model is compared to results from TGF experiments and accurately captures both
the initial decrease and subsequent increase in peak widths as electric field strength
increases. The results of this combined analytical and experimental study provide a
useful tool for estimation of dispersion and optimization of TGF systems.

Keywords: microfluidics; temperature gradient focusing; kinematic dispersion;
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1. Introduction

Dispersion, the natural tendency for ordered molecules to spread into disorder, is
caused by both molecular diffusion and bulk fluid motion in the presence of shear
(Taylor 1953). High dispersion rates may be advantageous for mixing and
chemical reactions but are undesirable in separation and purification appli-
cations. For separations, minimizing dispersion improves resolution and
sensitivity (Bharadwaj et al. 2002) and yields improved dynamics for
concentration and purification applications (Bharadwaj & Santiago 2005),
while for mixing applications, increased dispersion typically yields shorter
mixing times (Nguyen & Huang 2005; Bottauschi et al. 2007). As a consequence,
the physical processes that lead to dispersion have been a subject of intense
interest for at least a century (Albert 1910). In recent years, the development
of the concept of the micro total analysis system (mTAS) or ‘lab on a chip’
(Manz et al. 1993; Auroux et al. 2002; Reyes et al. 2002; Vilkner et al. 2004;
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Dittrich et al. 2006) has led to the further exploration of dispersion within
microchannels. We present an analysis of dispersion for focusing systems, in
particular, microfluidic temperature gradient focusing. Temperature gradient
focusing, hereafter ‘TGF’ (Ross & Locascio 2002), is an electrophoretic
separation and focusing technique which has seen recent application to
separations of chiral enantiomers (Balss et al. 2004), neutral and hydrophobic
analytes (Kamande et al. 2007), and small molecules in the presence of adsorbing
serum proteins (Munson et al. 2007).

In the field of microfluidics, researchers are most familiar with dispersion
caused by molecular diffusion and Taylor dispersion (Taylor 1953). In 1953,
Taylor demonstrated that, under certain conditions, the cross-sectional average
of the unsteady, three-dimensional concentration field within a channel evolves
as a one-dimensional convective diffusion equation. (Note that this seminal work
is also the first detailed study of dispersion in microchannels, as Taylor
performed his experiments in 500 mm diameter tubes.) Here, the advective
dispersion in the axial direction is balanced by radial diffusion, causing peak
variance to increase linearly in time, with the characteristic slope determined by
an effective dispersion coefficient. Taylor further demonstrated that, theoreti-
cally, all solute plugs flowing within a channel ultimately reach this limit given
enough time (Taylor 1953, 1954). Subsequently, Aris proved that the (now
named) Taylor regime could be unified with the pure diffusive regime by using an
effective dispersion coefficient that was the sum of the molecular diffusivity
and the Taylor dispersion coefficient (Aris 1956). The effective dispersion concept
has proved to be extremely useful and has been extended to other geometries
(Dutta & Leighton 2002), generalized using alternative analyses (Brenner 1990;
Stone & Brenner 1999), and extended to apply to electroosmotic flows
(Griffiths & Nilson 1999), electrophoresis in nanochannels (Pennathur &
Santiago 2005) and TGF (Huber & Santiago 2007).

While the Taylor–Aris regime is the most common regime in microfluidic
systems, an oft-overlooked regime in microfluidics is that of pure convective or
kinematic dispersion (also examined by Taylor 1953). Also known as ballistic
dispersion (Ajdari et al. 2006), kinematic dispersion is that which occurs on a
short time scale, such that no appreciable diffusion takes place and suspended
solutes follow the ‘ballistic’ trajectories given by their local streamlines. This
leads to significant curvature in the concentration field, as the ‘topological’
concentration lines are stretched by shear in the fluid velocity profile. In
microfluidic systems, specifically the case of a solute plug injected into a
microchannel, this regime is transient and quickly gives way to Taylor–Aris
dispersion due to the small characteristic channel dimensions. In channels with
non-circular cross sections, the largest cross-sectional dimension must be
considered when estimating transition to Taylor dispersion, otherwise the time
to reach the regime will be underestimated, as will be the dispersion rate
(Chatwin & Sullivan 1982; Ajdari et al. 2006).

Dispersion in focusing systems such as TGF differs from traditional Taylor
dispersion in that the relevant dispersion time scale is the focusing time scale,
which does not increase with time. As a result, focused peaks can be ‘trapped’
within the ballistic dispersion regime. In a previous work, we developed
generalized dispersion theory for TGF which yielded results applicable to the
Taylor–Aris regime. Here, we introduce a heuristic model of dispersion for
Proc. R. Soc. A (2008)
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focusing systems applicable to the full dispersion space. The paper is organized as
follows: we briefly review TGF focusing theory and then develop our dispersion
model. Lastly, we describe our experimental results and compare with the
theoretical predictions.
2. Analysis

As described previously (Ross & Locascio 2002; Huber & Santiago 2007), TGF
focuses charged species by balancing an axially varying electrophoretic flux with
a counterflow, causing each specie to focus at the location where its net mass flux
sums to zero (figure 1). The variation in electrophoretic velocity is accomplished
through the use of a buffer with a temperature-dependent ionic strength induced
by a temperature gradient applied along the axis of the microchannel. Following
the convention of Ross & Locascio (2002), the buffer ionic strength is represented
by the non-dimensional function f(T ), where T is the buffer temperature. The
electrophoretic velocity is then uephZn0;ephE0f , where n0,eph is the analyte’s
electrophoretic mobility at a defined reference temperature and E0 is the
reference field strength (defined as the current flux, I/A, divided by the reference
conductivity, s0). Note, in some cases an analyte’s mobility may have an
additional temperature dependence, which may also be used to induce focusing.
For more details see Ross & Locascio (2002).

As in most microchannel systems, the Reynolds number is much less than
unity and the Debye length is several orders of magnitude smaller than the
characteristic dimensions of the channel. We neglect net charge in the bulk flow
caused by the conductivity and permittivity gradients (Lin et al. 2004) because
the dispersion associated with electric body forces is small compared with
that caused by both the externally and internally generated pressure-
driven flow (Bharadwaj & Santiago 2005). The flow is then given by Stokes’
equation, 0ZKVpCmV2u using a non-uniform Helmholtz–Smoluchowski slip
boundary condition, u eoZ32E=m. As argued by Santiago (2001), the Helmholtz–
Smoluchowski equation remains applicable as a local slip velocity in flows where
all of the parameters may be non-uniform, e.g. where ueo is the local
electroosmotic flow velocity at the interface between the bulk and charge
layer, 3 is the local permittivity, z is the local zeta potential, E is the local axial
electric field and m is the local viscosity.

We model our focusing system using a convection–diffusion equation
incorporating a conservative electrophoretic flux term. As qualitatively proposed
by Ross & Locascio (2002), the system may be represented as a one-dimensional
convective diffusion equation using an effective diffusivity. Huber & Santiago
(2007) formally derived the equation by performing a cross-sectional area
average on the full transport equation to yield
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where overbars represent a cross-section average; c is the concentration; ubulk is the
bulk fluid velocity (equal to the sum of electroosmosis plus pressure-driven flow);
ueph is the electrophoretic velocity; D is the molecular diffusivity; and Deff is the
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Figure 1. Schematic of TGF process with advective dispersion. (a) An electrophoretic velocity is
countered by an opposing liquid flow, composed of both pressure-driven and electroosmotic flow.
A temperature gradient is applied to a microchannel, inducing a gradient in the electrophoretic
velocity of an analyte. (b) The analyte ‘focuses’ where the electrophoretic and convective fluxes
sum to zero. Both molecular diffusion and advective dispersion broaden the band about the focus
point. (c) Bodipy dye focused in a 20!200 mm wide channel with an applied electric field and
temperature gradient of 60 V mmK1 and 108C mmK1, respectively.
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effective dispersion coefficient that accounts for all off-axis transport effects. Note
the diffusivity gradient term on the l.h.s., which represents a local drift velocity
caused by an axial diffusivity gradient. It arises from the use of the Fokker–Planck
diffusivity law, JZKVðDcÞ, for the diffusive flux in place of Fick’s law, V$DVc,
which strictly applies only for homogeneous D (Van Milligen et al. 2005).

Interestingly, since equation (2.1) follows from an area-averaging procedure
applied to the fully transient, three-dimensional, convective diffusion equation, it
may be used to represent all dispersion regimes. The full decomposition also
yields a deviation concentration equation in terms of c0 (defined such that
cZ �cCc 0 ), which determines the form of Deff. To determine the dispersion
regime, we define L as the characteristic length of an analyte peak, a as the
channel half-width and Up as the cross-section-averaged pressure-driven flow.
The characteristic time scales are then L/Up for axial advection and a2/D for
transverse diffusion. If the transverse diffusion time is much shorter than the
advection time, we meet the Taylor–Aris scaling criterion (i.e. L/a[Upa/D).

In the Taylor–Aris regime, the deviation equation for convective diffusion
reduces to a simple form where advective dispersion of the area-averaged
concentration (�c) due to the deviation velocity (u0) balances radial diffusion
of deviation concentration, i.e. u 0v�c=vxzDrK1vðrvc 0=vrÞ=vr (Taylor 1953;
Stone & Brenner 1999). By solving for the deviation concentration in terms of
the area-averaged concentration (Huber & Santiago 2007), we determine an
analytical expression for Deff as follows:

Deff ZDCk
U 2

pa
2

D
hDð1CkPe2Þ: ð2:2Þ
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Figure 2. Dispersion regime map (modified from a similar plot in Probstein (1994)). The upper-left
region contains the Taylor–Aris regime, with effective diffusivity D(1CkPe2), where k is a constant
determined by the channel geometry (e.g. 2/105 for parallel plates). This regime is subdivided
into diffusive, Taylor–Aris and Taylor sub-regimes according to Taylor’s scaling arguments
(Taylor 1954). The lower-right region beneath the transition regime is the ballistic regime. L is the
characteristic peak length, a is the characteristic channel half-width and L/a represents the non-
dimensional diffusion time. Pe is Upa/D, where Up is the mean pressure-driven velocity, and D is
the diffusivity at the focus point. For elution processes, L/a can be interpreted as a time axis.
However, for focusing processes, L/a is a steady value set by electromigration and dispersion,
which determine the characteristic dispersion regime.
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Here, k is a constant determined by the channel geometry (e.g. kZ2/105 for
parallel plates and 1/48 for a cylinder) and Pea Z Upa/D. Note that Up is a local
quantity and can vary axially due to internally generated pressure gradients
(Herr et al. 2000). (Continuity is not violated because the total flow, i.e.
pressure-driven plus electroosmotic, remains uniform.)

In regimes other than Taylor–Aris, the deviation equation becomes complex
and includes gradients of the full three-dimensional concentration field.
Consequently, we may no longer derive an explicit analytical expression for
Deff. Dispersion in these ‘non-Taylor’ regimes is the main subject of this paper.
The current analysis is, to our knowledge, the first model of this ‘ballistic’ regime
(Ajdari et al. 2006) for an electrophoretic focusing method.

Figure 2 summarizes the dispersion regime map as a function of L/a and Pe.
Here, L can be interpreted as the characteristic length of the solute peak of
interest (see below). The upper-left region contains the Taylor–Aris regime,
beginning with purely diffusive dispersion at the left and transitioning towards
Taylor dispersion at the right. Equation (2.2) above is applicable throughout this
entire region, where the slope (L/a)/Pea is larger than approximately 2.5 (Taylor
1954; Aris 1956). The lower-right region contains the transitional and ballistic
regimes. For typical flow-through/elution processes, dispersion leads to continual
Proc. R. Soc. A (2008)



D. E. Huber and J. G. Santiago600
growth of the peak width. Thus the L/a axis may be considered a time axis. An
initially sharp peak in the ballistic regime will grow in its width, ultimately
satisfying L/a[Pea and entering the Taylor–Aris regime. Until that point, Deff

is itself a function of time (Ajdari et al. 2006), and it is necessary to account for
the additional dispersion incurred when passing through the ballistic and
transitional regimes (Young & Jones 1991).

In contrast, for electrophoretic focusing processes, the characteristic length of
the focused peak, L, maintains roughly the same value (after an initial focusing
transient) even as the maximum concentration increases. This characteristic
length is determined by the quasi-steady state balance between electromigration
velocity gradients (providing focusing fluxes) and dispersion. Depending on
the relative ratio of electromigration to dispersion fluxes, the axial dimension
of the peak, L, may be larger than or on the order of the capillary radius a. For
L/a[Pea, we can apply the Taylor–Aris approximation and equation (2.2)
holds. However, for L/a of order Pea or less, the focused peak never attains
the Taylor–Aris regime and remains fixed within either the ballistic or
transitional regimes.
(a ) Dispersion model

We wish to develop a model that provides a reasonable estimate for Deff

outside the Taylor–Aris regime. To do so, we first consider the hypothetical case
of pure convective, or so-called ‘ballistic’ dispersion (Ajdari et al. 2006). This
represents the limit where the focusing time scale is so short that species are
unable to migrate across streamlines as they focus. Thus, each streamline will
have an independent focal point. Once focused, molecules that migrate away
from their respective focus locations in the spanwise, y, and transverse, z,
directions via Brownian motion are ‘instantly’ focused to the new streamline’s
focal point. This represents a limit towards the opposite extreme of Taylor
dispersion (where an individual molecule has sufficient time to sample all
streamlines and thus focuses at the axial location, x, where the cross-sectional
averaged velocities sum to zero). In the ballistic limit, instead of a single focus
location, we now have a set of focus loci that are determined on a streamline-
by-streamline basis as follows:

u bulkðx; y; zÞCu ephðx; y; zÞK
dDðx; y; zÞ

dx
Z 0: ð2:3Þ

In principle, we can solve this equation for arbitrarily complex flow fields
(e.g. those with varying internal pressure gradients, temperature gradients or
geometries). In common practice, the velocity associated with the diffusivity
gradient (the third term on the left) is several orders of magnitude smaller than
the other velocity terms, so we neglect this term. For our analysis, we assume
that spanwise temperature gradients are small, which makes the electrophoretic
velocity solely a function of the axial dimension. We also assume that the
change in electroosmotic slip velocity is small over the focus region. This allows
us to treat the pressure-driven flow (internal plus external) as fully developed
and independent of x. Doing so, we expand the bulk flow into its component
parts and have

Up Cu 0
pðy; zÞCu eoCE0n0f ðTðxÞÞZ 0; ð2:4Þ
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where u 0
p is the deviation pressure-driven velocity (u 0

pðy; zÞZupðy; zÞKUp).
If we redefine our axes so that the origin coincides with the cross-section
averaged focal point, then UpCueoCE0n0f ðTð0ÞÞZ0. We may now solve for

the focus position, x foci, as a function of y and z. In particular, if we perform a
Taylor series expansion of f about the focal point and use the first-order
approximation, fZf1xCf0, the resulting focus curve has a linear relationship
between the deviation velocity, u 0

p, and x foci, as follows:

x foci Z
u 0
pðy; zÞ
E0n0f1

; ð2:5Þ

where we include (y, z) as a reminder that u 0
p depends on the cross-stream

(i.e. spanwise and transverse) location.
Having derived a relation for the focus curve, we would like to determine its

cross-sectional averaged dispersion. Unfortunately, the solution for our
hypothetical case with purely ballistic dispersion yields a curve of zero width
(for each streamline) and infinite local concentration. Physically, this pure
ballistic limit is unrealizable. In practice, even with a very small focusing time
scale, a balance will be reached between diffusive broadening and electrophoretic
focusing. We instead offer here a more realistic approximation based on a
heuristic argument for the balance of diffusion and electrophoresis. To this end,
we consider replacing the concentration points (i.e. delta functions in
concentration) by small concentration ‘slices’, whose concentration profiles are
Gaussians in the x -direction. The size of the Gaussian is then given by the
linearized one-dimensional focusing solution, which has the variance, jD=E0neph;0
f1jha2 (Ross & Locascio 2002). This heuristic approach is motivated by our
experimental observations that axial slices of focused peaks have profiles closely
resembling Gaussians, even at significantly differing spanwise locations. We now
solve for the variance, as follows:

s2 Z

ÐÐÐ
x2cðx; y; zÞdx dy dzÐÐÐ
cðx; y; zÞdx dy dz

; ð2:6Þ

where

cðx; y; zÞZ c0 exp
KðxK x fociÞ2

2a2

� �
:

Note that this definition of the variance assumes that the centre of mass for the
concentration distribution is located at xZ0. This is appropriate given the linear
relationship between the deviation velocity (which has zero mean) and focus
location, provided that the mass distribution is approximately symmetric along
any axial slice. Then,

s2 Z
1

Aca
ffiffiffiffiffiffi
2p

p
ððð

x2 exp
KðxK x fociÞ2

2a2

� �
dx dy dz; ð2:7Þ

where Ac is cross-sectional area of the channel. We may now perform the inner
integration. Recognizing that this yields the second moment with respect to x,
we write

j2
xðy; zÞZ

1

a
ffiffiffiffiffiffi
2p

p
ð
x2 exp

KðxK x fociðy; zÞÞ2

2a2

� �
dx: ð2:8Þ
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Since the centre of mass, mx, is simply x foci and the variance of each Gaussian is
a2, we use the relationship between the variance and the second moment to yield

j2
x Zs2Cm2

x Za2 Cðx fociÞ2: ð2:9Þ
We can now solve for the variance of the full concentration distribution by
performing the cross-sectional average

s2 Za2 C
Up

E0n0f1

� �2
$û2

p ; ð2:10Þ

where ûpZu 0
p=Up, the mean-normalized deviation velocity. The variance of the

full concentration distribution is thus the sum of the variance of the individual
Gaussians plus the mean of the squared focus locations. Here we see that ballistic
dispersion causes a surplus in variance above that given by the simple one-
dimensional solution. The surplus variance is composed of two parts, the mean
square of the normalized deviation, which is determined by the flow profile, and
the specie’s multiplier Up=E0n0f1, which is a function of the specie, focus location
and temperature gradient. Note that this multiplier is independent of electric
field as Up is directly proportional to E0 provided the mean focus location and the
channel temperature profile remain constant (i.e. when Joule heating is
negligible). This variance thus represents the asymptotic limit for the case of
pure convective dispersion.

(b ) Transitional dispersion

As described earlier, the Taylor–Aris regime occurs when axial advective
dispersion is balanced by radial diffusion. As we enter the transitional regime,
diffusion gradually loses ground versus convective dispersion. Alternatively, from
a Lagrangian perspective, the time scale for focusing is too short for solutes to
sample all streamlines in an unbiased fashion, but too long to neglect the effect
of diffusion entirely. We therefore modify our ballistic model to account for
the fact that solutes now only sample nearby streamlines. We replace the
deviation velocity of equation (2.10) with a weighted average of the local
streamlines, uc, to give

s2 Za2C
Up

E0n0f1

� �2
$u2

c : ð2:11Þ

To determine uc, we convolve û 0
p with a symmetric Gaussian kernel which

approximates the velocity averaging that occurs as solutes diffuse across
streamlines. Consequently, the variance of this convolution kernel, K(y,z), is
proportional to the product of the diffusivity and the characteristic focus time,
tfocZ1=2E0n0f1, so the kernel takes the form

Kðy; zÞwexp
Ky2Kz2

4Dktfoc

� �
Z exp

Ky2Kz2

4ka2

� �
; ð2:12Þ

where k is a constant of proportionality. This heuristic kernel function is based
upon the probability distribution for the location of a diffusive particle centred
on the focal location of each streamline. This is an approximation to an ideal
kernel, which must account for both the conditional probability of particles
Proc. R. Soc. A (2008)
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starting on remote streamlines to jump to the designated streamline and the
amount of time each particle samples the intervening streamlines. In general,
nearby streamlines are disproportionately represented. Consequently, the
constant, k, is less than unity and biases the kernel to weigh nearby streamlines
preferentially. For sufficiently small focusing times, this heuristic solution
recovers the pure ballistic dispersion result.

Lastly, in order to compare our transitional/ballistic results with the traditional
Taylor–Aris results, we write (2.11) in terms of an effective diffusivity, using
sZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Deff=E0neph;0f1

p
, to get

Deff ZDmol 1CPe2
a

a

� �2
u2
c

� �
ZDmolf1CPe2Fða=aÞg; ð2:13Þ

since our convolved velocity profile and its variance, u2
c , are also functions of a/a.

We find that our heuristic theory leads to a result very similar to the Taylor–Aris
dispersion coefficient, but with a Peclet number modified by the function, F, that
accounts for both convective and geometric effects.

(c ) Two-dimensional Hybrid ballistic/Taylor dispersion

For our experimental system,with its high aspect ratio rectangular cross-section,
we generally find ourselves in the Taylor–Aris regime in the depth direction, but in
the hybrid regime in the width direction. In this case, we may reduce the
dimensionality of our model by one. To do so, we integrate out the z -dependency
and replace the diffusivity with the Taylor–Aris dispersion coefficient within alpha
in equation (2.11). Additionally, we replace v with its depth-averaged analogue by
using the analytical series solution for Poiseuille flow in a rectangular channel
(Doshi et al. 1978; White 1991), averaging the velocity in the depth direction and
convolving withK(y,z) as before. The result is an effective dispersion coefficient for
the depth-averaged concentration field with the same form as equation (2.13), but
with the molecular diffusivity everywhere replaced by the Taylor–Aris dispersion
coefficient for the depthwise parallel plates solution.
3. Experimental set-up

We present here only a brief summary of the experimental set-up. A detailed
description of the set-up used here is given by Huber (2006) and Huber &
Santiago (2007). Our experiments were performed with Tris-borate-focusing
buffer, composed of 900 mM Tris (hydroxymethyl)-aminomethane and 900 mM
boric acid (Sigma Aldrich, St Louis, MO). For focusing experiments, we prepared
solutions of the fluorescent dyes Bodipy propionic acid and Oregon Green 488
carboxylic acid (Invitrogen Corporation, Carlsbad, CA) using in-house deionized
water which was filtered with a 0.2 mm filter (Nalgene, Rochester, NY) prior to
use. For our microchannels, we used 50 mm long rectangular borosilicate glass
capillaries (Vitrocom, Inc., Mountain Lakes, NJ) with nominal inner dimensions
of 20!200 mm. The capillaries were mounted on a microscope slide and the slide
was mounted across two thermally regulated copper blocks, maintained at
different temperatures. The axial temperature gradient was induced where the
capillary spanned a 2 mm gap between the blocks.
Proc. R. Soc. A (2008)
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Figure 3. Full-field intensity images of focused Bodipy dye as a function of electric field strength.
The images show the focusing of negatively charged Bodipy dye within a 23!230 mm rectangular
capillary. The applied temperature gradient was 108C mmK1 and the applied electric fields ranged
from K10 to K80 V mmK1, yielding current-normalized fields, E0, of (a) K19, (b) K38, (c) K81,
(d ) K212 and (e) K345 V mmK1. The net flow is right to left, driven by electroosmosis. The
applied pressure head increases from 4 mm H2O in (a) to 35 mm H2O in (e), with the pressure-
driven flow component supporting the rightward electrophoretic flux.
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Huber & Santiago also give detailed descriptions of the control and calibration
of this set-up including buffer conductivity, electroosmotic mobility and
temperature field measurements. We simply note that at the high fields used
in the focusing experiments presented here, Joule heating was significant and led
to rises in absolute temperature within the channel. Within the gradient region,
the axial temperature profile remained approximately linear, although the
temperature difference across the gradient region decreased since Joule heating
was a greater disturbance in the lower-temperature (more electrically resistive)
liquid (Huber 2006). The change in temperature gradient with field was included
in our subsequent dispersion calculations.
4. Temperature gradient focusing results

In our previous study (Huber & Santiago 2007), we performed a series of focusing
experiments at lowfield andPeclet number,which captured thebehaviour expected
within the Taylor–Aris regime. In the present work, we performed experiments to
examine wider TGF experiments with a variety of fluorescent analytes, under a
range of applied electric fields, DV/L, and nominal temperature gradients, DT/L,
and explored the system behaviour at high fields. Figure 3 shows sample full-field
fluorescence images of focused Bodipy propionic acid with DT/LZ108C mmK1

and DV/LZ10–100 V mmK1. The applied head increases roughly linearly, with

4 mm H2O applied for the 10 V mmK1 field and 35 mm H2O for 80 V mmK1. The
direction of electrophoretic flux is left to right, while the bulk flow is right to left,
Proc. R. Soc. A (2008)
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Figure 4. Bodipy peak width as function of reference field at three applied temperature gradients.
Plotted are the standard deviations for the Gaussian fit to the intensity profile data. Error bars
show the 95% CI of the peak width based on error propagation of the positional uncertainty. The
solid lines show the theoretical width for each temperature gradient assuming focusing at the mean
focus location with hybrid Taylor ballistic dispersion. For all series, n0ZK0.6!10K8 m2 VK1 sK1

and D0 Z5!10K10 m2 sK1. D, f1 and Up are determined from the focus location, temperature
gradient and field as described in the text. Up at the mean focus point was determined by a
polynomial fit to the Up versus E0 data (see text). The theory lines were least-squares fits to the
data, yielding the bias constant kZ0.03 from equation (2.12) for all cases. Open circle, 20–408C;
open square, 20–608C; open diamond, 20–808C; solid line, theory.
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driven predominantly by electroosmosis. The positive head supports the
electrophoretic flux by slightly reducing the net bulk flow. The associated pressure
gradient yields concentration fields similar to the pressure-driven flow of a neutral
species (although here the peak is relatively stationary).

Additional focusing experiments (not shown) revealed the presence of multiple
focusing peaks, suggesting the possibility that the Bodipy dye had reacted with
the buffer to form multiple species, possibly through a reaction of the propionic
acid with the primary amine of Tris (Huber & Santiago 2007). (Note, in general,
we found that many of the dyes used had multiple focusing peaks. This may be a
consequence of the fact that most commercially available dyes are reactive and
intended for conjugation with proteins or other biological molecules.) The
primary consequences for the present work is that the electrophoretic mobilities
and diffusivities differ from those measured with borate buffer (for example
Bharadwaj et al. 2002). For the experimental results presented in figures 3 and 4,
focusing was performed upon a relatively slow (i.e. lower magnitude mobility)
Bodipy peak in order to facilitate flow control.

The complete high-field results using the selected Bodipy peak are summarized
in figure 4. In each series, the left-hand regulating block was set to 208C, while the
right-hand block was set to 40, 60 and 808C. (The results for the 20/408C case
correspond to the images in figure 3.) The error bars show the 95% CI based upon
an error propagation estimate of the standard deviation in focus position measured
Proc. R. Soc. A (2008)
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for the full dataset. Qualitatively, figure 4 shows the expected trends. Peak widths
decrease with increasing temperature gradients and, at low fields, decrease with
increasing fields. As the field strength grows, advective dispersion (as witnessed by
the increased curvature in figure 3) increases and peak widths grow.

To generate the predictions for the peak width shown in figure 4, we required
independent estimates of all parameters in equation (2.11), in particular n0, D,
Up and f1. Given the uncertainty in the composition of the peak specie, we first
obtained independent estimates of the electrophoretic mobility and diffusivity.
To this end, we used the net zero flux condition at the focus location,
u ephðneph;0ÞCu eoðneo;0ÞZKup, with a low-field subset of the focusing conditions

(for which we had measurements of x foc, up and temperature), and solved the
over-determined model for the electrophoretic mobility using least-squares
optimization. This yielded our estimate of neph,0ZK0.6!10K8 m2 VK1sK1,
which agreed well with our previous results (Huber & Santiago 2007). To
estimate diffusivity, we fit peak variance with sðtÞ2Zs20C2Dt immediately
following deactivation of the electric field, from which we measured D at each
focus temperature. By taking the ratio of the Stokes–Einstein equation at T
and T0Z208C, we obtained the expression, DðTÞ=D0ZðTC273Þm0=293mðTÞ,
where m0 is the viscosity at T0. We then extrapolated each diffusivity
measurement to the reference temperature, yielding the mean reference value
D0Z5!10K10 m2 sK1.

For f1, we assumed a uniform focus location equal to the mean position for the
data series. The focus temperature and temperature gradient were then
determined from the temperature profile. Multiplying the temperature gradient
by df/dT at the focus temperature yielded the focusing parameter, f1. In general,
the magnitude of f1 decreased with increasing field due to the growth in Joule
heating. The heating simultaneously reduced the temperature gradient and
raised the focus temperature, which also reduced the magnitude of df/dT.
(See Ross & Locascio (2002) for a plot of f versus T for 900 mM Tris-borate.)
For the 20/408C case, the range was K34 to K22 mK1, while for 20/60 and 20/
808C the ranges were K63 to K33 mK1 and K73 to K29 mK1, respectively. Note
that the f versus T curve flattens at higher temperature, so f1 is not simply
proportional to the difference between the end point temperatures.

To determine Up, we used the same zero electric field data from which we
generated the diffusivity estimate. Here we measured the location of the moving
peak versus time. Since the variation around the mean focus location led to a
variation in Up, we fit the resulting Up versus E0 data with quadratic polynomials
to smooth the variation and generate an estimate for Up at the mean focus

location. The resulting relations were UpðE0ÞZðK1:69!10K15ÞE 2
0Cð1:32!

10K9ÞE0C2:73!10K6 for 20/408C with R2Z0.995; ð2:49!10K21ÞE 3
0CðK3:23!

10K15ÞE 2
0Cð1:54!10K9ÞE0K3:03!10K6 for 20/608C with R2Z0.997; and

ðK3:92!10K15ÞE 2
0Cð2:01!10K9ÞE0C4:95!10K6 for 20/808C with R2Z0.997,

where Up is in m sK1 and E0 is in V mK1. For the 20/408C and 20/608C cases, we
fit data between 0 and 275 V mmK1. For the 20/808C case, we fit data for fields
between 0 and 180 V mmK1. In the latter case, the experimental results above
180 V mmK1 varied significantly. We attribute the irreproducibility to a number
of factors stemming from the high amount of Joule heating. In particular, as the
temperature elevates within the channel, air bubbles would frequently nucleate
Proc. R. Soc. A (2008)
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gradients. The data points collapse to the expected scaling (solid line, from equation (2.13))
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no polynomial fit), as are Dfoc and f1. From these, Peclet number, a and n are calculated. Note the
excellent match for the 20–408C data. We attribute the greater scatter in the 20–60 and 20–808C
data both to their greater Joule heating and the temperature-influenced reaction of Bodipy
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and partially occlude the channel. Also, as noted by Huber & Santiago, propionic
acid is reactive with the primary amine of Tris producing several species whose
equilibrium concentration ratios are dependent on pH and temperature (Kemp &
Vellaccio 1980). The consequent variation in electrophoretic mobility would also
contribute to the irreproducibility.

We then performed a least-squares fit of the theoretical peak widths to the
experimental data using k, from (2.12), as a single empirical fitting parameter.
This yielded an excellent match with kZ0.03 for the full 20/408C data. This
value was then used for the 20/60 and 20/808C series. Figure 4 shows that the
fits (using k as a single fitting parameter) to the experimental data are fairly
good. The semi-empirical model captures the Taylor–Aris regime very well
(as expected), and the transition between Taylor dispersion- and ballistic
dispersion-dominated regimes. We present model predictions for the 20/60 and
20/808C cases up to a maximum field of 165 and 180 V mmK1, respectively. At
such fields, Joule heating is significant, resulting in highly non-uniform
temperature fields, and the model assumptions clearly break down.

For figure 5, we determine the experimentally observed dispersion coefficient,
Deff,meas, by dividing measured peak width by E0n0f1. The figure shows a scaling
of the dispersion coefficient by diffusivity versus the modified Peclet number of
(2.13). The data collapse well up to approximately Pe2ða=aÞ2v2Z3. At higher
values (corresponding to the highest fields), there is a trend towards greater
Proc. R. Soc. A (2008)
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Figure 6. (a–e) TGF scanning images of Oregon Green dye. The images show a focused band of
negatively charged Oregon Green carboxylic acid scanned through the gap region by a gradual
increase of the pressure head. The applied temperature gradient was 358C mmK1 and the applied
electric field was K40 V mmK1. From top to bottom, images were captured at relative times of 0,
60, 90, 120 and 150 s.
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dispersion values. This is consistent with the breakdown of the uniform
temperature gradient assumption as high amounts of Joule heating begin to
induce both axial and spanwise temperature non-uniformities. We also observe
significant scatter in the 20–60 and 20–808C cases, which we attribute to changes
in the specie’s electrophoretic mobility (as described above).

(a ) Dispersion optimization

Figure 4 highlights the trade-off between increased focusing strength and field-
dependent dispersion as electric field is raised. InTGF, high electric fields can cause
advective dispersion. In any TGF device where advective dispersion is significant,
there will then be an optimum range offield strengths thatminimizes peak width at
a given temperature difference. Further, since both dispersion and the focusing
parameter, f1, are strong functions of absolute temperature, peakwidthhas a spatial
dependence (through the focus temperature), even for fixed electric field and
temperature gradient.Herewedemonstrate this spatial dependence ofDeff,measwith
data obtained during a scanning TGF experiment (Hoebel et al. 2006). In this
experiment, we focused Oregon Green carboxylic acid while slowly increasing the
applied pressure difference, causing the pseudo-steady peak to traverse (or ‘scan’)
through the temperature gradient region. For this experiment, the cold and hot
blocks were set to 10 and 808C, and the applied field was 40 V mmK1, which
corresponded roughly with the optimum field strengths suggested by figure 4. As
with Bodipy, the scanning experiment revealed two primary peaks and multiple
weaker peaks. Figure 6 shows images of the faster of the primary peaks, as it
progresses through the gap region.When the peak is in the colder, left-hand region,
diffusivity is reduced and the advective dispersion is stronger, as indicated by the
Proc. R. Soc. A (2008)
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Figure 7. Scanning profiles of Oregon Green with axial dispersion dependence. (a) Width-averaged
axial intensity probability density functions (PDF) for the Oregon Green bands shown in figure 6.
(b) Focusing parameter, f1, at all scanned locations as determined from f versus T and temperature
field measurements. (c) Calculated effective dispersion coefficient based on the electrophoretic
mobility of Oregon Green (n0ZK5!10K8). The applied temperature gradient was 358C mmK1 and
the applied electric field was constant at K40 V mmK1.
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high degree of curvature in the spanwise direction. As it enters the hot region,
diffusive fluxes increase and the curvature associated with advective dispersion
is less apparent.

In figure 7, we normalize the axial profiles shown in figure 6 to yield the intensity
probability distribution functions (PDFs) for the five peaks. Plottedwith thePDFs
are the focusing parameter, f1, calculated from the temperature profile, and the
effective dispersion, determined by assuming an electrophoretic mobility for
Oregon Green of n0ZK5!10K8 m2 VK1sK1. The dispersion decreases initially
before beginning its expected climb with increasing temperature along the gap.
While this suggests that the advective dispersion is being reduced by an amount
greater than the increase inmolecular diffusivity, since the scanningwas performed
left to right, it is also possible that the leftmost peaks were still decreasing in width,
having not yet reached the pseudo-steady profile. In order to determine the
behaviour of the advective dispersion velocity scale, Up, measurements of this
quantity would be required at each location, something that was not possible with
this experiment. In any case, it is clear that there exist both optimal field values and
optimal focusing locations for TGF experiments.
5. Conclusion

In this work, we have extended our generalized dispersion model (Huber &
Santiago 2007) across the full range of dispersion regimes (i.e. pure diffusion
through Taylor–Aris and ballistic regimes). We have shown that the application
Proc. R. Soc. A (2008)
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of a cross section-averaged, one-dimensional, convective diffusion model is
useful even at high Peclet numbers (and correspondingly high electric fields),
provided the effective dispersion coefficient is modified to include ballistic
dispersion effects.

The various dispersion regimes have different consequences for the focusing
performance of TGF. At sufficiently low fields (with their correspondingly low
pressure-driven flow velocities), the steady-state focused peak width decreases
with increasing field, and molecular diffusivity is the primary source of
dispersion. At higher fields, the system may enter the Taylor–Aris dispersion
regime (Pew/L/w). Here dispersion may be represented by a traditional
Taylor–Aris dispersion coefficient. At higher fields, or in situations where
Pew/L/w is violated, the dispersion becomes ballistic in form and steady-state
peak widths increase sharply with applied field. Ballistic dispersion in TGF
occurs when molecules disperse along streamlines of the non-uniform bulk flow
because the time scale for focusing is smaller than the time for a molecule to
diffuse across the channel cross-section. The regime is indicated by an observable
induced curvature in the concentration field. For high fields, the dispersion
coefficient must account for these ballistic dispersion effects. Our heuristic theory
yields a dispersion coefficient that accurately models focused peak widths in this
regime. Lastly, we note that at even higher field strengths (depending on the
system geometry and heat transfer characteristics), Joule heating leads to
spanwise temperature gradients, which introduces additional electrophoretic and
diffusional dispersive forces. At such extreme fields, our depth-averaged
formulation and dispersion arguments fail, and it becomes necessary to model
the coupled three-dimensional temperature, concentration and velocity fields in
order to accurately determine the dispersion.

Despite these complexities, our results show that TGF performance is readily
optimized empirically, even when a detailed understanding of the heat transfer
and its associated dispersion components is unavailable. Both optimal field
strengths (as suggested by figure 4) and best focusing locations (see figure 7) may
be determined for a given microchannel geometry and set of focusing conditions.
System designers are advised to consider both optimal field strengths and
minimum-dispersion focus locations when developing focusing systems.

This work was sponsored by the National Institutes of Health (grant N01-HV-28183) and a NSF
PECASE Award (J.G.S., award number NSF CTS0239080) with Dr Michael W. Plesniak as award
monitor. D.E.H. was supported by a NDSEG fellowship and ARCS scholarship.
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